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ABSTRACT

Setting optimal alarm thresholds in vibration based condition
monitoring system is inherently difficult. There are no es-
tablished thresholds for many vibration based measurements.
Most of the time, the thresholds are set based on statistics
of the collected data available. Often times the underlying
probability distribution that describes the data is not known.
Choosing an incorrect distribution to describe the data and
then setting up thresholds based on the chosen distribution
could result in sub-optimal thresholds. Moreover, in wind
turbine applications the collected data available may not rep-
resent the whole operating conditions of a turbine, which re-
sults in uncertainty in the parameters of the fitted probabil-
ity distribution and the thresholds calculated. In this study
Johnson distribution is used to identify shape, location, and
scale parameters of distribution that can best fit vibration data.
This study shows that using Johnson distribution can elim-
inate testing or fitting various distributions to the data, and
have more direct approach to obtain optimal thresholds. To
quantify uncertainty in the thresholds due to limited data, im-
plementations with bootstrap method and Bayesian inference
are investigated.

1. INTRODUCTION

Wind turbines are generally subject to aleatory uncertainty
due to stochastic nature of the weather and the wind itself.
In addition to the stochastic nature that a turbine may expe-
rience under normal condition (not experiencing any faults),
the varying loads that a wind turbine experience makes mon-
itoring its condition inherently challenging. However, hav-
ing a condition monitoring system (CMS) dedicated to wind
turbines is vital for an effective maintenance program. Such
program can help ensure maximum uptime of the machine
by minimizing downtime. An example of such system has
been demonstrated by (Andersson, Gutt, & Hastings, 2007).
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Most CMS for wind turbine applications are based on vibra-
tion as described by (Tavner, 2012) and (Crabtree, 2011). A
case study of using vibration monitoring to detect and diag-
nose a fault in the generator bearing of a wind turbine in a real
industrial application has also been presented by(Marhadi &
Hilmisson, 2013).

As explained by (Marhadi & Hilmisson, 2013), primary com-
ponents monitored in wind turbines (for vibration based CMS)
are the generator, gearbox, main bearings, and tower. Usu-
ally accelerometers are installed on these components, and
there could be up to 10 accelerometers installed in a wind
turbine. The data acquisition unit in a wind turbine usually
collects vibration data continuously from each sensor. Dif-
ferent vibration measurements are considered in monitoring
different components of a wind turbine. To monitor genera-
tor bearings for example, several measurements are used in
different frequency ranges. The overall vibration RMS level,
ISO RMS [10 - 1000 Hz], high frequency band pass (HFBP
[1k - 10k Hz]), high frequency crest factor (HFCF), and sev-
eral harmonics or orders of the running speed of the generator
(e.g. 1X, 2X) are computed by the data acquisition unit con-
tinuously from each sensor. Depending on different failure
modes or types of fault, there could be more measurements
needed and computed from a sensor. To detect gear related
problems in a gearbox for example, the tooth/gear mesh fre-
quencies and sideband levels are usually computed in addi-
tion to other broad band measurements such as the ISO RMS.
The obtained scalar data are usually trended over time. When
the trend from a specific measurement (e.g. HFBP or ISO
RMS) crosses over a predefined threshold or limit, it will trig-
ger an alarm or warning. Thus it is very important to set the
thresholds correctly in order to minimize the number of false
alarms.

Given there could be up to 10 sensors installed in a turbine
and the number of measurements computed from an individ-
ual sensor could vary from 3 to more than 10, the number of
thresholds that needs to be set up is consequently large. It is
impractical to set them manually. Considering that each wind
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turbine is unique like an individual, it is necessary to set the
thresholds uniquely to each turbine. It will be even very in-
efficient if there are thousands of turbines with CMS whose
thresholds need to be set manually. More importantly, setting
a threshold is often a trade off between missing real alarms
due to a fault development and having false alarms. Thus it is
important to be able to set the thresholds at the optimum lev-
els automatically with minimum number of adjustments over
time.

(Marhadi & Hilmisson, 2013) explained that some limits are
determined based on statistics. It is often based on the as-
sumption that the distribution of a vibration measurement fol-
lows the Normal (Gaussian) distribution. (Jablonski, Barszcz,
Bielecka, & Breuhaus, 2013) discussed a methodology for
automatic threshold calculation in a large monitoring system,
including a wind turbine application. (Jablonski et al., 2013)
showed that different data types or vibration measurements
could have significantly different probability distributions other
than Gaussian. They investigated several distributions and
their comparison in fitting various data types for threshold
calculation. (Bechhoefer & Bernhard, 2005) have also pre-
sented a case where Gaussian distribution is not appropriate
to describe the probability distribution of first order magni-
tude (1X) of a helicopter shaft. They further explained that
it is important that the underlying distribution of a measure-
ment is correct so that the threshold can be determined based
on low probability of false alarm.

Earlier work to determine alarm threshold has been presented
by (Cempel, 1990), where he investigated the thresholds esti-
mation based on Chebyshev’s inequality, Weibull and Pareto
distributions. The work also showed its possible applica-
tion in prognosis although it is more complicated, such as
what (Cempel, 1987) showed. Later (Bechhoefer & Bern-
hard, 2004) described a methodology to set alarm thresholds
that takes into account variance between aircraft and vari-
ous aircraft state parameters (e.g. operating conditions). The
work assumed that the underlying data for estimating thresh-
olds have approximately Normal distribution. (Bechhoefer &
Bernhard, 2005) further demonstrated that thresholds based
on Gaussian statistic could yield greater false alarms than
anticipated, and discussed using non-Gaussian distribution,
such as Rayleigh distribution for analysis of shaft compo-
nents. Using a linear transformation to whiten different vi-
bration data types or condition indicators, (Bechhoefer, He,
& Dempsey, 2011) presented a method to set a threshold of
gear health, also known as health indicator, based on proba-
bility of false alarm. The algorithm to define health indica-
tor as a function of condition indicators was developed using
three statistical models, namely order statistic, sum of con-
dition indicators, and normalized energy. The models were
developed with the assumption that the condition indicators
follow Gaussian distribution or Rayleigh distribution.

In the aforementioned work, a lot of investigations were done
to determine the most appropriate underlying distribution of
the vibration data before a threshold is set. It is often nec-
essary to fit several distributions to the data available, and to
choose the most appropriate one based on a goodness-of-fit
test, such as in (Jablonski et al., 2013). Rather than trying to
fit various distribution functions, it could be more practical to
choose a distribution function that can fit a family of distri-
butions, such as Pearson family of distributions and Johnson
family of distributions. Thus there are no needs to fit various
distribution functions or to compare different thresholds set
based on different distributions. This paper focuses on using
Johnson family distribution as a unified approach to model
a wide variety of distribution functions that describe various
vibration data in wind turbine condition monitoring applica-
tions. Thus automatic threshold setting could be performed in
a more practical manner. Although in condition monitoring
system the data available are usually sufficient for statistical
analysis, however it is not necessarily true for wind turbine
applications due to various seasons or wind conditions that
a wind turbine can experience in a year. Ideally at least a
whole year is necessary to collect data in order to reflect the
true underlying distribution. However it is clearly impractical
to collect a year data before condition monitoring system is
applied with the correct thresholds. This paper also explores
the effects of having limited data available (e.g. a few days,
a few weeks, or a few months) in thresholds setting and the
possible false alarms generated.

2. JOHNSON FAMILY DISTRIBUTION

Johnson distribution is a family function that can fit different
distribution shapes. It is not necessary to test different distri-
butions that will give the best fit to a set of sample data be-
cause Johnson family distribution has the flexibility to fit data
with a large range of different distribution shapes. A brief
description of the Johnson distribution function is provided
here.

Fitting data with Johnson distribution involves transforming a
continuous random variable x,whose distribution is unknown,
into a standard Normal (z) with mean 0 and variance 1 ac-
cording to one of the four normalizing translations proposed
by (Johnson, 1949). The general form of the translation is

z = γ + δf

(
x− ξ
λ

)
(1)

where z ∼ N(0, 1), γ and δ are shape parameters, λ is a
scale parameter , and ξ is a location parameter. The transla-
tion functions that map different distributions to the standard
Normal distribution in the Johnson distribution function are
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as follows:

f(y) =





ln(y) for lognormal family(SL),

ln
[
y +

√
y2 + 1

]
for unbounded family(SU ),

ln
[

y
1−y

]
for bounded family(SB),

y for normal family(SN ),
(2)

where y = x−ξ
λ . If equation 1 is an exact normalizing trans-

lation of x to a standard normal random variable, the cumu-
lative density function (CDF) of x is given by

F (x) = Φ(z) for all x ∈ H, (3)

where Φ(z) denotes CDF of standard Normal distribution,
and the spaceH of x is

H =





[ξ,+∞) for lognormal family(SL),

(−∞,+∞) for unbounded family(SU ),

[ξ, ξ + λ] for bounded family(SB),

(−∞,+∞) for normal family(SN ).

(4)

The probability density function (PDF) of x is then given by

p(x) =
δ

λ
√

2π
f ′(y)exp{−1

2
[γ + δf(y)]2}, (5)

where f ′(y) =
df

dy
. For more information one can refer to

(DeBrota, Dittus, Swain, Roberts, & Wilson, 1989).

There are four methods to estimate Johnson parameters (γ, δ,
ξ, λ) as described by (DeBrota et al., 1988), namely: moment
matching, percentile matching, least squares, and minimum
Lp norm estimation. The reader can refer to (DeBrota et al.,
1988) for detailed description of each method. In this work,
the moment matching method is used with implementation
based on (Hill, Hill, & Holder, 1976) due to its simplicity in
Scilab (Enterprises, 2012).

The moment matching method involves determining the fam-
ily distribution first by the location of skewness, β1 and kur-
tosis, β2 in Figure 1. This figure represents the original iden-
tification chart published by (Johnson, 1949), with positive
goes downward in the y-axis (β2). The number of parame-
ters to be estimated is then determined by solving a system
of non-linear equations between the sample moments and the
corresponding moments of the fitted distribution. A brief pro-
cedure of the method can be described as follows:

1. Calculate the moments of x : m2,m3 and m4.

2. Calculate the skewness and kurtosis of x : β1 ≡ m2
3/m

3
2

and β2 ≡ m4/m
2
2.

3. Use the chart in Figure 1 to determine the family or trans-
formation function used.

Figure 1. Johnson distribution family identification chart.

3. THRESHOLD SETTING

An alarm threshold can be set based on a predetermined prob-
ability of false alarm (pf ). This value is essentially a design
parameter that can be changed to suit the condition mon-
itoring needs. In this work, the predetermined probability
of false alarm is set at 10−4. Thus knowing the underlying
probability distribution of the data, it is the same as finding
the 99.99 percentile of the distribution or finding the inverse
CDF, see equation 6. The inverse CDF of Johnson distribu-
tion in this work is computed using Scilab CASCI library, see
(Enterprises, 2012).

threshold = F−1(1− pf). (6)

Setting an alarm threshold involves collecting vibration data
over a period of time. Depending on how the data are col-
lected, some preprocessing may be needed, such as outliers
removal. Next, a probability distribution function is fitted to
the data collected and its parameters are estimated. Based on
the estimated parameters, a threshold is set following equa-
tion 6. Figure 2 illustrates the steps to determine an alarm
threshold.

4. DATA COLLECTION FROM A WIND TURBINE

Data used in this study were taken from Generator Non Drive
End of a 3 MW turbine. For a typical generator bearing moni-
toring performed by Brüel & Kjær Vibro (B&K Vibro), there
could be up to or more than 10 different vibration data or
measurements generated from a sensor. For simplicity of this
study, only ISO RMS and High Frequency Band Pass (HFBP)
data are used for analysis. HFBP is usually used as early in-
dicator of potential bearing related problems, and ISO RMS
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Data collection

Fit a probability distribution func-
tion, p (estimate its parameters)

Compute threshold = F−1(1 − pf)
based on the estimated parameters

Threshold set

Figure 2. Block diagram of threshold setting.

is usually used as general indicator of faults developing into
a later stage. These two measurements or indicators can re-
flect the general conditions of generator bearings across all
turbine types. For more specific problems, such as looseness
or imbalance, other measurements or indicators are needed.

ISO RMS and HFBP are computed in the time domain (com-
puting the root mean squared of the signal) after applying the
appropriate filter settings. The sample length is set so that it
captures approximately 10 revolutions of the generator rota-
tion. The vibration is sampled at 25600 per second.

The data were collected for approximately two months while
the turbine was running during its normal operating condi-
tions and producing power at least above 100 kW. No known
mechanical faults existed during the data collection period.
The data were collected by the data acquisition unit on the
turbine and sent every 5 minutes to a remote surveillance cen-
ter. Data collection interval could actually vary in the real or
commercial condition monitoring systems. It often depends
on the choice of monitoring strategy of the machine.

As described by (Marhadi & Hilmisson, 2013), since a wind
turbine operates over a wide range of speeds and loads, it is
important to set thresholds within more or less the same op-
erating condition. Thus changes in measured vibration levels
are indeed due to developing faults, and not due to changing
operating conditions. Typical B&K Vibro monitoring strat-
egy for wind turbines is to divide the operating conditions of
a wind turbine into 5 different operating power classes (OPC)
based on the power produced by the wind turbine. For a 3
MW turbine, the power classes are as follow: 100 - 700 kW
(Class 1), 700 - 1300 kW (Class 2), 1300 - 2000 kW (Class
3), 2000 - 2700 kW (Class 4), and 2700 - 3200 kW (Class 5).
Thus each measurement is classified based on in which op-
erating condition it is taken. No data are recorded when the

turbine operates below 100 kW or above 3200 kW.

Figure 3 and 4 present the distributions of ISO RMS and
HFBP taken over a period of approximately two months in
two power classes. Through out the paper only data from the
first two power classes are presented for better clarity and or-
ganization. Johnson, Normal, and Weibull distributions are
fitted in each type of data for comparison. The figures show
that even though the data type is the same (e.g. ISO RMS),
however the distribution in different power classes can be sig-
nificantly different. In this example, the Johnson family type
that fits each data type is found to be bounded Johnson distri-
bution (SB).

Figure 3. Histogram of HFBP data with different distributions
fit in 2 power classes.

The alarm thresholds were then computed following steps de-
scribed in section 3. In this work, all data are assumed to be
valid. Thus no preprocessing (e.g. outliers removal) were
done on the collected data. For comparison, table 1 and table
2 present the thresholds of HFBP and ISO RMS calculated
based on Johnson, Normal, and Weibull distributions.

5. THRESHOLD CALCULATION BASED ON LIMITED DATA

Ideally, the vibration data collected to set alarm thresholds
should reflect all normal operating conditions (without any
mechanical faults and the turbine has gone through all possi-
ble weather and seasonal conditions) in order to set the thresh-
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Figure 4. Histogram of ISO RMS data with different distri-
butions fit in 2 power classes.

Table 1. HFBP thresholds at 2 OPCs (m/s2).

Underlying Distribution OPC 1 OPC 2
Johnson 12.79 20.75
Normal 8.55 13.18
Weibull 9.19 16.64

olds effectively. This data collection may take up to a year,
and it is clearly impractical. A more practical approach is to
collect a month of vibration data (or even less than a month),
and set the thresholds based on the collected data.

Realistically, the turbine may not have gone through all nor-
mal operating conditions after a month of operation. Within
almost two months of data collection with every 5 minutes
interval of data recording, the numbers of vibration data in
each OPC from the turbine used in this study are as follows:
3067 data in OPC 1, 1960 data in OPC 2, 1673 data in OPC 3,
1595 data in OPC 4, and 1719 data in OPC 5. The underlying
question is: do these numbers reflect the operating conditions
for the rest of the year? Experience has shown that thresholds
can be set based on these data, but adjustments might be nec-
essary after a couple of months. For all practical purposes the
number of adjustments needs to be minimum.

To investigate the effects of having limited data (not enough
data to capture all operating conditions of a turbine) in set-

Table 2. ISO RMS thresholds at 2 OPCs (m/s2).

Underlying Distribution OPC 1 OPC 2
Johnson 0.77 0.99
Normal 0.89 0.93
Weibull 1.11 0.97

Table 3. HFBP false alarm rates (%) at 2 OPCs when thresh-
olds are set based on the whole data.

Underlying Distribution OPC 1 OPC 2
Johnson 0.00 0.00
Normal 0.65 1.17
Weibull 0.46 0.31

ting alarm thresholds, the vibration data collected from each
OPC are re-sampled uniformly with the following numbers of
samples: 720, 360, 180, and 90. It is assumed that the vibra-
tion data collected represent the overall operating conditions
of the turbine. Another assumption is made that in a worst
case scenario, vibration data from a turbine are collected and
sent every hour (e.g. to reduce data collection). With this
assumption, the vibration data available in this study repre-
sent approximately 3 months of data. Then the numbers of
re-samples from these data represent 30 days, 15 days, 7.5
days, and 3.75 days of data. Although the numbers of sam-
ples look statistically sound, in reality, they may reflect only
short periods of the turbine operational time (order of days).

First, the false alarm rates of the whole data were computed
when the thresholds set based on the whole data were used.
The results are presented in tables 3 and 4. Thresholds based
on Johnson and Weibull distributions generally result in the
lowest false alarm rates. However, there are some thresholds
that result in false alarm rates that are not within the specified
probability of false alarm. Thresholds set based on Normal
distribution are more likely to have higher false alarm rate.
This shows the difficulty in fitting the most appropriate dis-
tribution to the data. For example, the type of Johnson family
fitted to the data is bounded (SB) in all power classes for both
HFBP and ISO RMS since the data determine this family to
be the most suitable. Having Johnson (SB) distribution can
result in lower thresholds. One can choose to strictly fit John-
son unbounded distribution (SU ) regardless what the data in-
dicate the most appropriate family is, such as in the work done
by (Marhadi, Venkataraman, & Pai, 2012). However, having
the data determine the most appropriate family and possibly
having Johnson SB distribution as the most appropriate one
can prevent the threshold set too high. Thus having a more
conservative estimate of the threshold.

Tables 5 and 6 present the false alarm rates when the thresh-
olds set based on limited data are used or checked against the
whole data available. As the number of data used to compute
thresholds decreases, the false alarm rates can either increase
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Table 4. ISO RMS false alarm rates (%) at 2 OPCs when
thresholds are set based on the whole data.

Underlying Distribution OPC 1 OPC 2
Johnson 0.29 0.00
Normal 0.00 0.10
Weibull 0.00 0.00

or decrease. This indicates that the data available are cru-
cial for thresholds setting. Smaller false alarm rates can be
achieved if the sampled data are more representative of the
actual distribution. Figures 5 and 6 give visual representa-
tions of how the distributions of sampled data could actually
be different from the whole population.

Figure 5. Emperical CDF of HFBP from various sampled
data in 2 power classes.

To give some visual representations of the data and how false
alarms could occur, figures 7 and 8 show the vibration data
over a time period and the thresholds set based on Johnson
distribution with different number of data. The figures also
show exponential averages of the collected data over time (see
Eq. (7)), which can be done to reduce fluctuation in the data
and to provide smoother trending. In this study, α = 0.01 and
x̄1 = x1.

x̄t = αxt + (1− α)xt−1 (7)

Alarming can be done on the averaged data over time. As
stated earlier, the averaged data are smoother and provide a
clearer picture when a mechanical fault develops, e.g. by
increasing vibration level over time. The false alarm rates
are zero in all cases (e.g. different number of samples to set
thresholds) when the averaged data are checked against the

Figure 6. Emperical CDF of ISO RMS from various sampled
data in 2 power classes.

Table 5. HFBP false alarm rates (%) at 2 OPCs when thresh-
olds are set based on different number of data.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.65 0.97
Weibull 0.36 0.00

360
Johnson 0.00 0.00
Normal 0.59 0.61
Weibull 0.13 0.00

180
Johnson 0.00 0.00
Normal 0.46 0.31
Weibull 0.20 0.00

90
Johnson 0.00 5.41
Normal 0.65 3.60
Weibull 0.13 1.53

computed thresholds. Trending the averaged data also en-
sures that the machine condition is indeed entering an abnor-
mal condition when the trend crosses a threshold.

Using the averaged data to set thresholds can be done, and
will result in thresholds closer to the trend data, which pro-
vides quicker response to a change of mechanical condition.
However, false alarm rate could be potentially higher, espe-
cially when only limited amount of data are available to set
the thresholds as illustrated in figures 9 and 10. In these
examples, only 720 data are available to set the thresholds,
which represent 30 days data collection with every one hour
data being sampled, and they are averaged. The false alarm
rate in these examples can be as high as 59%. This situation
can occur if during the first 30 days of data collection, the
frequency of collecting data is not enough to capture many
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Table 6. ISO RMS false alarm rates (%) at 2 OPCs when
thresholds are set based on different number of data.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.10
Normal 0.00 0.10
Weibull 0.00 0.00

360
Johnson 0.95 0.00
Normal 0.00 0.20
Weibull 0.00 0.00

180
Johnson 0.15 0.00
Normal 0.00 0.10
Weibull 0.00 0.00

90
Johnson 0.72 1.28
Normal 0.00 0.10
Weibull 0.00 0.00

Figure 7. HFBP data over time with thresholds based on fit-
ting Johnson distribution at different number of data in power
class 2.

high vibration occurrences. Since the data are averaged, the
trend becomes sensitive to high values that are not previously
recorded. Thus it is generally more appropriate to use the raw
data (without averaging) to set thresholds.

6. QUANTIFYING UNCERTAINTY IN LIMITED DATA

The previous sections have shown that in wind turbine appli-
cations, the number of available data can be statistically large,
but not necessarily represent the actual distribution of the
data or all operating conditions of a turbine. Having limited
amount of data generally leads into uncertainty in choosing
the appropriate probability distribution to fit the data. More-
over, even if the correct probability distribution is known,
having limited amount of data that do not represent the actual
population can results in wrong estimates of the distribution
parameters. Thus the thresholds set based on these data could
be either too low or too high (not optimum).

Figure 8. ISO RMS data over time with thresholds based
on fitting Johnson distribution at different number of data in
power class 2.

It is beneficial to quantify the uncertainty of thresholds (the
confidence bounds) set based on limited data. This can be
done by first quantifying the uncertainty of the statistical dis-
tribution parameters. Different methods are available, both
analytically (e.g. maximum likelihood estimate) or based on
re-sampling techniques (e.g. bootstrap) and Bayesian esti-
mate. (Marhadi et al., 2012) have described that there have
been no analytical methods to estimate uncertainties (confi-
dence bounds) of Johnson distribution fitted to some data.
To estimate the uncertainties of the thresholds set based on
Johnson distribution (and other distributions in this work), a
re-sampling technique (bootstrap) is used. Bootstrap method
has relatively simple implementation in comparison to other
methods, e.g. Bayesian inference. Although the implementa-
tion is simple, bootstrap method is known to have some lim-
itations as described by (Chernick, 1999), such as problems
with estimating extreme values and variance of a distribution
that has a very large/infinite variance. For comparison and
to overcome some of the limitations of bootstrap method, a
Bayesian inference procedure is used to estimate the distribu-
tion of Johnson function parameters and the resulting bounds
of the thresholds.

6.1. Bootstrap Method

Bootstrap technique re-samples the sampled data of 720, 360,
180, and 90 with replacements, and obtains new sets of 720,
360, 180, and 90 data. After each sampling, the distribution
parameters are estimated using the selected samples, and the
thresholds are calculated based on the estimated parameters
of the distributions. Due to sampling with replacement, some
samples are repeated in the new selected set. Bootstrap sam-
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Figure 9. Averaged HFBP data over time with threshold
based on fitting Johnson distribution with 720 averaged data
in power class 2.

pling is applied 1000 times, and the statistical parameters es-
timated are computed for each sample set in 1000 bootstrap
repetition.

For estimating Johnson distribution parameters, in each se-
lection set the appropriate Johnson family distribution (SL,
SB , SU , or SN ) is determined using moment values of the
data in the selection set. The results of the bootstrap tech-
niques are the 2.5 and 97.5 percentiles of the thresholds set
based on each distribution studied. They provide lower and
upper bounds of the thresholds with 95% confidence. This
information provides flexibility for an engineer to choose the
thresholds within the lower and upper bounds.

The false alarm rates are then computed again as the lower
and upper bound thresholds are used on the whole data avail-
able to simulate a real situation when only limited amount of
data available to set thresholds. The results are presented in
tables 7 to 10. As one may expect, the lower bound thresh-
olds result in higher false alarm rates and the upper bound
ones result in lower rates. Generally the upper thresholds set
based on both Johnson and Weibull distributions result in low
false alarm rate. The main concern is always whether the
thresholds have been set optimally by choosing the most ap-
propriate distribution describing the data. Since the underly-
ing distribution of data collected is not always known before-
hand, fitting Johnson distribution can be a general or middle
ground solution.

Figures 11 and 12 show the lower and upper bounds (2.5 and
97.5 percentiles) of the thresholds based on Johnson distri-
bution from bootstrapping the 90, 180, 360, and 720 data.
They are represented as error bars. Some thresholds deter-

Figure 10. Averaged ISO RMS data over time with threshold
based on fitting Johnson distribution with 720 averaged data
in power class 2.

Table 7. HFBP false alarm rates (%) at 2 OPCs when upper
thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.52 0.66
Weibull 0.13 0.00

360
Johnson 0.00 0.00
Normal 0.29 0.31
Weibull 0.00 0.00

180
Johnson 0.00 0.00
Normal 0.26 0.00
Weibull 0.00 0.00

90
Johnson 0.00 3.47
Normal 0.26 2.81
Weibull 0.00 0.26

mined from limited data are very closed to the thresholds de-
termined from the whole data (e.g. HFBP thresholds in OPC
2 from 180 and 360 data). Some of them are higher or even
lower than the thresholds determined from the whole data,
but the upper and lower bounds enclose the thresholds from
the whole data (e.g. ISO RMS threshold in OPC 2 from 180
data). If the upper bounds are used where they are higher
than thresholds set based on the whole data, there is again a
concern whether these thresholds are too high or not.

6.2. Bayesian Inference of Johnson Distribution

Bayesian procedure is employed to overcome some limita-
tions of the bootstrap method and to address the concern that
the upper bound thresholds from bootstrap could be too high
or not optimal. The inference of Johnson distribution parame-
ters follows the procedure outlined by (Marhadi et al., 2012).
Only Bayesian inference of Johnson distribution parameters
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Figure 11. Confidence bounds of HFBP thresholds from
bootstrapping various sampled data in 2 power classes.
Thresholds are based on Johnson distribution.

Table 8. HFBP false alarm rates (%) at 2 OPCs when lower
thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.31
Normal 0.85 1.58
Weibull 0.59 0.26

360
Johnson 0.13 0.31
Normal 0.85 1.53
Weibull 0.36 0.00

180
Johnson 0.65 0.61
Normal 0.82 0.87
Weibull 0.36 0.00

90
Johnson 1.17 9.03
Normal 1.43 5.56
Weibull 0.65 3.11

are considered because this is the focus of the paper, and un-
like the other distributions (e.g. Normal and Weibull) there
has not been many work on Bayesian inference of Johnson
distribution parameters.

Bayesian inference is a statistical method that allows using
observation data (x) to infer the unknown parameters (θ) of a
distribution that may describe the data. The unknown param-
eters are represented as PDF. Bayes theorem allows to relate
the condition probability distribution of the observed data (x)
given the distribution parameters (θ), p(x|θ) to the condition
probability of the parameter (θ) given the observation data
(x), p(θ|x) as shown in equation 8,

p(θ|x) ∝ l(θ|x)p(θ), (8)

where p(θ|x) is the posterior PDF of θ given x, l(θ|x) =

Figure 12. Confidence bounds of ISO RMS thresholds
from bootstrapping various sampled data in 2 power classes.
Thresholds are based on Johnson distribution.

Table 9. ISO RMS false alarm rates (%) at 2 OPCs when
upper thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

360
Johnson 0.13 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

180
Johnson 0.26 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

90
Johnson 0.00 0.10
Normal 0.00 0.00
Weibull 0.00 0.00

p(x|θ) is the likelihood of data x given θ, and p(θ) is known
as the prior distributions of θ. The prior here reflects prior
knowledge of θ before any data are considered.

The likelihood is the same as the PDF chosen to fit the data.
For Johnson distribution it is equation 5. The prior is usually
subjective. The posterior distribution is then obtained by mul-
tiplying the prior and all the likelihood functions according to
the number of observed data (n) as

p(θ|x) ∝ l(θ|x1)l(θ|x2) . . . l(θ|xn)p(θ). (9)

Sampling the joint distribution function (posterior distribu-
tion) in equation 9 is often difficult and required using a Markov
Chain Monte Carlo (MCMC) method. In (Marhadi et al.,
2012), they used a Metropolis method to sample the posterior
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Table 10. ISO RMS false alarm rates (%) at 2 OPCs when
lower thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.59 0.56
Normal 0.00 0.26
Weibull 0.00 0.00

360
Johnson 2.38 0.56
Normal 0.00 0.51
Weibull 0.00 0.20

180
Johnson 4.47 0.31
Normal 0.00 0.46
Weibull 0.00 0.20

90
Johnson 5.80 4.59
Normal 0.00 0.61
Weibull 0.00 0.41

distribution. They also chose to use non-informative prior or
flat prior, with an infinite interval. They reported that sam-
pling the four parameters of Johnson distribution simultane-
ously could cause the Metropolis method fail to converge. It
is more likely to achieve convergence by inferring only two
parameters, namely γ and δ assuming the estimates for lo-
cation and scale parameters (ξ and λ) are more accurate to
obtain.

Following findings in (Marhadi et al., 2012), only γ and δ are
inferred in this work. Based on the sampled data, Bayesian
inference of Johnson SB , SL, SN or SU distribution can be
performed. It is determined based on the moments of the
data using moment matching method as described in sec-
tion 2. Bayesian inference is performed with a random walk
Metropolis method with 4000 burn-in iterations period and
2000 samples from the posterior distribution. The scale pa-
rameters (variance) of the proposal distribution/density (a bi-
variate Normal distribution with zero covariance) are adjusted
so that acceptance rate between 30% to 50% can be achieved.
For more details description of the Metropolis method, one
can refer to (MacKay, 2003). It is found that even when only
γ and δ are inferred in this work, convergence of the Metropo-
lis method can be difficult to achieve when flat prior is used.
Thus Normal priors for γ and δ are investigated. Again, prior
is often subjective and could be subject to more detailed in-
vestigation in future work.

It is assumed that γ and δ are distributed according Normal
distribution. The means are assumed to be equal to the first
estimates of γ and δ of the sampled data. The variance is
difficult to estimate. However, after some trials and errors,
it is found that standard deviations of 0.5 of the means (first
estimates of γ and δ) could result in satisfactory convergence.
Figure 13 shows the output of 2000 samples for γ and δ from
the Metropolis method after 4000 burn-in iteration with 90
data from ISO-RMS at OPC 2. The running average plotted
in the figure (green line) shows convergence of the method.
The initial estimates of the parameters for these 90 data are as
follows: γ = 0.644, δ = 0.807, ξ = 0.339, λ = 0.499, and

the Johnson distribution family is SB or bounded. Samples
from the Metropolis method have means of γ = 0.624 and
δ = 0.806. In this work, all of the limited sampled data fall
into the family of SB or bounded Johnson distribution. Thus
in this work Bayesian inference is done mainly with Johnson
SB family distribution.

Figure 13. 2000 samples of γ and δ from Metropolis method
after 4000 burn-in iteration with 90 data from ISO-RMS at
OPC 2. ξ and λ are kept constant at the initial estimates.

The 2000 samples of parameters estimated from Bayesian in-
ference are then used to determine thresholds based on John-
son distribution. The 2.5 and 97.5 percentiles of the thresh-
olds are determined as in the case when bootstrap is used to
provide lower and upper bounds. Figures 14 and 15 show the
lower and upper bounds of the thresholds based on Bayesian
inference of 90, 180, 360, and 720 data. In comparison to
results from bootstrap, the bounds for HFBP are generally
larger, with the lower bounds are generally much lower, which
could result in much higher false alarm rates if they are used.
Only in OPC 1 where HFBP thresholds from 360 and 720
data have much higher upper bounds than the bounds from
bootstrap. These results could be due to the choice of prior,
which is subject to further study. On the contrary, the bounds
for ISO RMS are generally much tighter than bounds from
bootstrap. These results are encouraging to prevent setting
thresholds too high. For completeness, the false alarm rates
are computed again as the lower and upper bound thresholds
are used on the whole data available. The results are pre-
sented in tables 11 to 14.

Using Bayesian inference to quantify uncertainties in setting
alarm thresholds is actually attractive when large quantity of
historical data are available because the method facilitates
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Figure 14. Confidence bounds of HFBP thresholds from
Bayesian inference of various sampled data in 2 power
classes. Thresholds are based on Johnson distribution.

Table 11. HFBP false alarm rates (%) at 2 OPCs when up-
per thresholds from Bayesian inference are used. Underlying
distribution is Johnson.

Number of data OPC 1 OPC 2
720 0.00 0.00
360 0.00 0.00
180 0.00 0.00
90 0.00 5.41

learning. However there are still some challenges that need
to be solved before it can be used in real industrial applica-
tions, such as having a faster/efficient method to sample the
posterior distribution. In case of using an MCMC method,
there is not yet a well established method to determine how
many burn-in iterations are needed that guarantees conver-
gence. Convergence could potentially be achieved after a
long burn-in period that requires long computational time.
In regards to using Johnson distribution, proper selection of
the priors still needs further investigation so that sampling
the posterior distribution is computationally efficient, and the
whole 4 parameters could possibly be inferred.

In the actual wind turbine condition monitoring at B&K Vi-
bro, an alarm is not always generated when a measurement
crosses a threshold in any power classes. A more complex
system is implemented to prevent false alarms, see for exam-
ple the work by (Marhadi & Hilmisson, 2013). This paper
simply presents a general framework to set alarm thresholds
automatically using Johnson distribution, and how the uncer-
tainties in setting the thresholds can be quantified when only

Figure 15. Confidence bounds of ISO RMS thresholds
from Bayesian inference of various sampled data in 2 power
classes. Thresholds are based on Johnson distribution.

Table 12. HFBP false alarm rates (%) at 2 OPCs when lower
thresholds from Bayesian inference are used. Underlying dis-
tribution is Johnson.

Number of data OPC 1 OPC 2
720 99.7 97.5
360 99.7 96.0
180 99.7 93.0
90 0.13 15.4

limited data are available. The method could be useful not
only in wind turbine applications, but also in other machiner-
ies.

7. CONCLUSION

A method to set alarm thresholds automatically based on fit-
ting Johnson distribution to vibration data has been presented.
Using Johnson distribution eliminates the need to test various
distributions that could fit the collected data most appropri-
ately. Thus it can prevent choosing incorrect distribution that
may result in setting sub-optimal thresholds. Results in this
study show that low false alarm rate can be achieved by utiliz-
ing Johnson distribution. The implementation is simple and
straightforward, which should also be applicable in machiner-
ies other than wind turbines.

The problem of having limited data in wind turbines that may
not represent the whole or most operating conditions of a tur-
bine has been investigated based on bootstrap method and
Bayesian inference. Lower and upper bounds of alarm thresh-
olds are obtained using both methods, and the false alarm
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Table 13. ISO RMS false alarm rates (%) at 2 OPCs when up-
per thresholds from Bayesian inference are used. Underlying
distribution is Johnson.

Number of data OPC 1 OPC 2
720 0.00 0.00
360 0.59 0.00
180 1.50 0.00
90 0.59 1.07

Table 14. ISO RMS false alarm rates (%) at 2 OPCs when
lower thresholds from Bayesian inference are used. Underly-
ing distribution is Johnson.

Number of data OPC 1 OPC 2
720 10.2 0.10
360 10.6 0.00
180 8.80 0.00
90 1.04 1.32

rates are investigated when these thresholds are used. These
could provide information where to set the thresholds effec-
tively. Bootstrap is generally simple to implement, while
Bayesian inference has slightly more complicated implemen-
tation. However, initial results in this study suggest that Bayesian
inference could potentially prevent from setting the thresh-
olds too high once the challenges of its implementation can
be overcome.

Future work may include investigation of the effectiveness of
the method when it is actually implemented to a wide number
of turbines to catch real mechanical faults. Comparison with
other methods or the more established ones could be made in
this way, and the effectiveness of each method can be vali-
dated. Future work may also include finding the most effec-
tive method to estimate Johnson distribution parameters other
than the moment matching method used in this study.
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